If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X-20=X
We move all terms to the left:
X^2+X-20-(X)=0
We add all the numbers together, and all the variables
X^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $
| -6(-2+11r)=6(6-12r) | | 14-4q=2(-2q+7) | | -7(-3s-1)-14s=7s+7 | | 39+x+121=180 | | 12-18-14k=8-14k | | 2x•7=28 | | 37+49+x=180 | | -20f=-9(5f-14)+16f | | 3-16v-15=-12-16v | | -20-6y-7=-5y+20 | | -5(4t-2)=10-20t | | -20j-18=17-13-20j | | 12m-19=-20m+2(16m+15) | | -13+14b=-2-11+14b | | -11-4y=-19-4y+8 | | 9t+7=9t+3 | | x/3-4=3/10 | | 5-5z=-5z+8 | | 8b-8b+24-24=0 | | -8+10d=-8 | | x²+x=66 | | 4+10m=10m+4 | | -5f-4=-5f | | 57=8g+7 | | 2z-9=-5z+5 | | y=-526+1E+6 | | -1x=4x-5 | | 40+2x=-5x+30 | | A=m2+2m-3 | | 6x–7=2x+9 | | (2x-8)-8x=0 | | 9z+9/5-8=5.4 |